Strong evidence for stereoselective 1,3-additions of transient nitrilium phosphane-ylide complexes: synthesis of the first 1-aza-3-phosphabuta-1,3-diene complexes[†]

Rainer Streubel,* Udo Schiemann, Nils Hoffmann and Peter G. Jones

Institut für Anorganische und Analytische Chemie der Technischen Universität Braunschweig, Postfach 3329, D-38023, Braunschweig, Germany, E-mail: r.streubel@tu-bs.de

Received (in Cambridge, UK) 8th March 2001, Accepted 6th June 2001 First published as an Advance Article on the web 4th July 2001

Synthesis of the first 1-aza-3-phosphabuta-1,3-diene complexes was achieved by heating solutions of 2*H*-azaphosphirene tungsten complexes, 1-piperidinonitrile and [bis(trimethylsily])methylene]chlorophosphane; X-ray structure analysis of one new complex revealed a *cisoid* position of the chlorine atom and the phosphaalkene unit at the C,N,P-core of the trapped nitrilium phosphane-ylide complex and a distorted heterobutadiene π -system.

[3+2] cycloaddition reactions of *P*-chlorophosphaalkenes¹ I with nitrilium betaines II such as nitrile ylides² and sulfides³ are very useful in phosphorus heterocycle synthesis, especially if an elimination of chlorotrimethylsilane occurs subsequently (III \rightarrow IV), thus yielding aromatic heterocycles IV (Scheme 1). Recently, we reported trapping reactions of nitrilium phosphane-ylide complexes with alkynes,4 nitriles5 and phosphaalkynes⁶ giving five-membered phosphorus heterocycle complexes. If phenylacetylene was used as trapping reagent and solvent we obtained a product mixture that consisted of a 1Hphosphirene and a $2\hat{H}$ -1,2-azaphosphole complex and two acyclic compounds, which, at least formally, resulted from two differently orientated 1,3-addition reactions of the C-H bond of phenylacetylene to the 1,3-dipole system of a transient nitrilium phosphane-ylide complex.7 Because of this complicated situation, we were not sure about the mechanism and/or the concertedness of these 1,3-addition reactions.

Here we report the synthesis of the first 1-aza-3-phosphabuta-1,3-diene complexes using our thermal three-component methodology: 2*H*-azaphosphirene complexes, 1-piperidinonitrile and a *P*-chlorophosphaalkene. The products were obtained in pure form by column chromatography and fully characterized by various means; one complex was characterized additionally by an X-ray diffraction study.

Heating toluene solutions of the 2*H*-azaphosphirene tungsten complexes $1a^8$ and $1b^9$ with 1-piperidinonitrile and [bis-(trimethylsilyl)methylene]chlorophosphane¹⁰ (3) for 2 h afforded selectively the 1-aza-3-phosphabuta-1,3-diene complexes **5a,b** as trapping products of the transiently formed nitrilium phosphane-ylide complexes **2a,b** (Scheme 2). Complexes **5a,b** were confirmed by elemental analyses, NMR spectroscopy and mass spectrometry.[‡] Only traces (<5%) of other phosphorus-containing products were observed by ³¹P NMR spectroscopy displaying resonances at δ 106.2 and 337.4 (reaction of **1a**) and at δ 104.1 and 349.9 (reaction of **1b**); complexes **4a,b** could not be detected. It is remarkable that the

 $[\]dagger$ This work is dedicated to Professor Henning Hopf on the occasion of his 60th birthday.

attack at the P–Cl σ -bond is preferred to that at the π -system of the *P*-chlorophosphaalkene, which might be caused by strong steric repulsion between the substituents of the carbon centre of the P=C unit and those of the phosphorus centre of the 1,3-dipole in the transition state of the cycloaddition reaction; if this interpretation of the reaction course is correct this example would be unprecedented in nitrilium betaine chemistry.

www.rsc.org/chemcomm

The ³¹P NMR spectra of complexes **5a**,**b** showed resonances at low field (**5a**: δ 339.5, $|^{3}J(PP)|$ 15.5 Hz; **5b**: δ 342.3, $|^{3}J(PP)|$ 8.0 Hz), which can be assigned to the phosphaalkene nuclei, and those at higher field (**5a**: δ 111.8, $|{}^{3}J(PP)|^{1}$ 15.5, $|{}^{1}J(PW)|$ 284.7 Hz; **5b**: δ 112.9, $|{}^{3}J(PP)|$ 8.0 Hz, $|{}^{1}J(PW)|$ 305.1 Hz) to the Nbonded phosphorus nuclei. With respect to the resonances of the low-coordinated phosphorus centres, the ³¹P NMR data of 5a,b are quite different from those found for non-coordinated 1-aza-3-phosphabuta-1,3-dienes, which have been synthesized using trimethylsilyl shift reactions, and which show resonances in the range $\delta 0-100^{11,12}$ These differences are probably associated with the different substituents at the P=C carbon atoms, which, in our case, represent acceptor groups and in the other cases donor groups. The structure of the complexes 5a,b were unambiguously confirmed by the ¹³C{¹H} NMR spectra, which displayed resonances of the C=N and C=P carbon atoms with two phosphorus-carbon couplings each, whereby the greater magnitude values establish the direct bonding of one phosphorus centre to two different sp2-carbon centres. The molecular structure of complex 5a (Fig. 1), as established for the solid state by X-ray crystallography,§ shows a significantly distorted heterobutadiene π -system [N(1)–C(6)–P(2)–C(7) –106.6°] with bond lengths typical of localized double bond systems

Scheme 2 Reagents and conditions: 615 mg of complex 1a or 534 mg of complex 1b, 100 μ L 1-piperidinonitrile, 449 mg phosphaalkene 2, 2.5 mL toluene, 75 °C, 2 h; column chromatograpy (Al₂O₃, -20 °C, *n*-hexane); 5a: yellow solid, yield: 44%, mp 128 °C (decomp.); 5b: yellow solid, yield: 34%, mp 118 °C (decomp.).

Fig. 1 Molecular structure of **5a** in the crystal (ellipsoids represent 30% probability levels; hydrogen atoms are omitted for clarity). Selected bond lengths (Å) and angles (°): W-C(1) 1.999(6), W-P(1) 2.5332(13), P(1)-N(1) 1.626(4), P(1)-C(19) 1.820(4), N(1)-C(6) 1.303(5), P(2)-C(6) 1.880(5), N(2)-C(6) 1.333(6), P(2)-C(7) 1.669(5); C(1)-W-P(1) 178.43(15), W-P(1)-C(19) 116.35(16), P(1)-N(1)-C(6) 134.4(3), N(1)-C(6)-P(2) 119.2(3), C(6)-P(2)-C(7) 110.7(2).

[N1–C6 1.303(5) and P2–C7 1.669(5) Å]. The P(2)–C(6) distance 1.880(5) Å represents a P–C single bond (average value: 1.885).¹³ The coordination environment of the P1 atom is tetrahedral with a P1–Cl distance of 2.143(1) Å and a P1–W distance of 2.5323(16) Å. Furthermore, the structure confirmed the *cisoid* position of the chlorine atom and the phosphaalkene unit at the C,N,P-core of the trapped nitrilium phosphane-ylide complex and thereby strengthened the assumption of a concerted 1,3-addition process that is responsible for the product formation.

Currently we are investigating the role of sterically less bulky P-substituents of transient nitrilium phosphane-ylide complexes (*cf.* ref. 4c), in three-component reactions on the reaction course.

We are grateful to the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support.

Notes and references

‡ Satisfactory elemental analysis were obtained for complexes **5a,b**. NMR data were recorded in CDCl₃ solutions (295 K) at 50.3 MHz (13 C) and 81.0 MHz (31 P), using TMS and 85% H₃PO₄ as standard references; *J*/Hz. *Selected spectroscopic data* for **5a,b**: **5a**: 13 C{ 11 H} NMR: δ 1.2 [d, 3 *J*(PC) 2.6, CSi(CH₃)₃], 1.5 [d, 3 *J*(PC) 13.0, CSi(CH₃)₃], 3.4 [d, 3 *J*(PC) 2.7, CHSi(CH₃)₃], 4.1 [d, 3 *J*(PC) 2.6, CHSi(CH₃)₃], 2.4.4 (s, NCH₂CH₂CH₂), 25.2 (s, NCH₂CH₂CH₂), 26.0 (s, NCH₂CH₂CH₂), 40.8 [d, 3 *J*(PC) 4.5, CH(SiCH₃)₂], 45.9 (s, NCH₂CH₂CH₂), 50.6 [d, 3 *J*(PC) 4.5, NCH₂CH₂CH₂), 175.9 [dd, 1 *J*(PC) 101.1; 2 *J*(PC) 7.1, C=N], 199.0 [d, 2 *J*(PC) 8.2, 5 *J*(PC) 2.9, 1 *J*(WC) 127.0, *cis*-CO], 200.3 [d, 1 *J*(PC) 85.9, C=P],

201.1 [d, ²*J*(PC) 33.0, *trans*-CO]. MS (pos.-CI; NH₃, ¹⁸⁴W) *m/z* (%): 851 (2) [M+H]⁺. **5b**: ¹³C{¹H} NMR: δ 1.0–2.3 [m, br, CSi(CH₃)₃], 11.9–14.1 [C₅(CH₃)₄], 22.7 [d, ³*J*(PC) 36.4, C₅(CH₃)], 24.6 (s, NCH₂CH₂CH₂), 25.0 (s, NCH₂CH₂CH₂), 25.8 (s, NCH₂CH₂CH₂), 46.3 [d, ³*J*(PC) 1.9, NCH₂CH₂CH₂], 50.4 [d, ³*J*(PC) 4.8, NCH₂CH₂CH₂], 67.8 [d, ¹*J*(PC) 16.2, C₅(CH₃)₅-C1], 136.9 [d, ²*J*(PC) 5.2, C₅(CH₃)₅-C2/5], 137.3 [d, ²*J*(PC) 8.2, C₅(CH₃)₅-C2/5], 141.9 [d, ³*J*(PC) 6.4, C₅(CH₃)₅-C3/4], 142.2 [d, ³*J*(PC) 5.8, C₅(CH₃)₅-C3/4], 174.7 [dd, ¹*J*(PC) 101.4, ²*J*(PC) 8.0, *C*=N], 197.0 [dd, ²*J*(PC) 8.4, *5J*(PC) 2.4, ¹*J*(WC) 126.9, *cis*-CO], 199.5 [d, ²*J*(PC) 34.7, *trans*-CO], 199.9 [d, ¹*J*(PC) 84.9, C=P]. MS (pos.-CI; NH₃, ¹⁸⁴W) *m/z* (%): 825 (4) [M+H]⁺.

§ Crystal structure determination of **5a**: Crystal data: C₂₅H₄₆ClN₂O₅-P₂Si₄W; monoclinic, space group P2₁/c, a = 10.854(2), b = 11.864(2), c = 29.372(4) Å, $\beta = 94.16(2)^\circ$, U = 3772.3 Å³, Z = 4, $\mu = 3.4$ mm⁻¹, T = -130 °C. Data collection: a colourless crystal ca. 0.4 × 0.3 × 0.3 mm was used to record 9019 intensities on a Stoe STADI-4 diffractometer (Mo-Kα radiation, $2\theta_{max} = 50^\circ$); 6639 reflections were independent ($R_{int} = 0.025$). An absorption correction based on ψ -scans was applied, with transmissions 0.72–0.80. Structure refinement: the structure was solved by the heavy-atom method and refined anisotropically on F^2 (program SHELXL-97, G. M. Sheldrick, Univ. of Göttingen) to wR2 0.072, R1 0.033 for 373 parameters and 59 restraints; S = 1.05, max. $\Delta \rho$ 1.2 e Å⁻³. The hydrogen atoms were included using a riding model or rigid methyl groups.

CCDC 161074. See http://www.rsc.org/suppdata/cc/b1/b102250b/ for crystallographic data in CIF or other electronic format.

- R. Appel, in *Multiple Bonds and Low Coordination in Phosphorus Chemistry*, ed. M. Regitz and O. J. Scherer, Thieme, Stuttgart, 1990, p. 155.
- 2 G. Märkl and S. Pflaum, Tetrahedron Lett., 1988, 29, 785.
- 3 M. Regitz and P. Binger, Angew. Chem., Int. Ed. Engl., 1988, 27, 1484.
- 4 (a) R. Streubel, H. Wilkens, A. Ostrowski, C. Neumann, F. Ruthe and P. G. Jones, Angew. Chem., Int. Ed. Engl., 1997, 36, 1492; (b) R. Streubel, U. Schiemann, N. Hoffmann, Y. Schiemann, P. G. Jones and D. Gudat, Organometallics, 2000, 19, 475; (c) R. Streubel, U. Schiemann, P. G. Jones, N. H. Tran Huy and F. Mathey, Angew. Chem., Int. Ed., 2000, 39, 3686.
- 5 H. Wilkens, F. Ruthe, P. G. Jones and R. Streubel, *Chem. Eur. J.*, 1998, **4**, 1542.
- 6 G. N. Cloke, P. B. Hitchcock, U. Schiemann, R. Streubel, J. F. Nixon and D. J. Wilson, *Chem. Commun.*, 2000, 1659.
- 7 H. Wilkens, A. Ostrowski, J. Jeske, F. Ruthe, P. G. Jones and R. Streubel, *Organometallics*, 1999, **18**, 5627.
- 8 R. Streubel, A. Ostrowski, S. Priemer, U. Rohde, J. Jeske and P. G. Jones, *Eur. J. Inorg. Chem.*, 1998, 257.
- 9 R. Streubel, U. Rohde, J. Jeske, F. Ruthe and P. G. Jones, *Eur. J. Inorg. Chem.*, 1998, 2005.
- 10 R. Appel and A. Westerhaus, Tetrahedron Lett., 1981, 22, 2159.
- 11 K. Issleib, H. Schmidt and C. Wirkner, Synth. React. Inorg. Met.-Org.
- Chem., 1981, 11, 279.
 12 L. N. Markovskii, V. D. Romanenko and T. V. Pidvarko, Zh. Obshch. Khim., 1984, 53, 1672.
- 13 F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen and R. Taylor, J. Chem. Soc., Perkin Trans. 2, 1987, S1.